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9 Representing data sets 

Data collected during numeracy activities can often be represented in a variety of ways: as 

tables of numerical values, as graphs, maps or scale drawings.  It is sometimes possible to 

identify patterns in collections of data.   

Patterns are important, as they can be used in new situations to make predictions about 

similar sets of data.  For example, we are familiar with the formulae for the properties of 

circles: 

𝐶 = 2𝜋𝑟             𝐴 = 𝜋𝑟2 

If the radius r of any circle is known, then the circumference C or the area A can be easily 

calculated.   

Another familiar formula is Ohm's Law, relating the current I, voltage V and resistance R in 

an electrical circuit.  This can be written in three equivalent forms: 

𝑉 = 𝐼𝑅                    𝐼 =
𝑉

𝑅
                  𝑅 =

𝑉

𝐼
 

If any two of the quantities current, voltage or resistance are known, then the third can be 

calculated. 

Sometimes it is convenient to produce algebraic expressions to represent patterns in data as 

a way of saving time with future calculations.  For example, engineering students might use 

trigonometry to devise a formula which links the side L of a hexagon bolt or nut with the 

width across the flats W.  If one of these quantities is known, the other can then be quickly 

calculated. 

  

 

 

 

 

 

Figure 236:  Dimensions of a hexagon nut  

A useful skill in numeracy is the ability to move easily between numeric, algebraic and 

geometric representations of particular collections of data.  Patterns in the data may be 

identified by plotting graphs, and it may then be possible to represent the patterns as 

algebraic expressions for use in solving similar problems. 
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As a first example of analysing sets of data, we will look at the factors which affect the 

stopping distance of a car.  This can be an important way of increasing safety awareness for 

young drivers. 

Stopping distances 
 

Braking distance for a vehicle depends on two sets of factors: those affecting the reaction 

time of the driver, and those affecting the deceleration rate for the vehicle when the brakes 

are applied.  A typical set of stopping distances are included in the Highway Code: 

 

 

 

 

 

 

Figure 237:  Stopping distances for cars travelling at different speeds 

We can enter these figures in a spreadsheet and plot graphs of the data: 

  

Figure 238:  Thinking and braking distances at different speeds 
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Columns have been added to the spreadsheet in figure 238 to explore the relationship 

between speed and thinking distance, and the relationship between speed and braking 

distance.  It is found that, within reasonable accuracy, two constant ratios exist: 

𝑡ℎ𝑖𝑛𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒: 𝑚

𝑠𝑝𝑒𝑒𝑑: 𝑚𝑝ℎ
= 0.3 

𝑏𝑟𝑎𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒: 𝑚

(𝑠𝑝𝑒𝑒𝑑: 𝑚𝑝ℎ)2
= 0.015 

We can combine these results to produce an overall formula for total stopping distance: 

𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒: 𝑚 = (0.3 × 𝑠𝑝𝑒𝑒𝑑: 𝑚𝑝ℎ) + (0.015 × 𝑠𝑝𝑒𝑒𝑑: 𝑚𝑝ℎ2) 

We might point out that thinking distance is based on a sudden unexpected event occurring, 

and represents the delay as the driver becomes aware of the situation and begins to apply 

the brakes.   If the driver is already anticipating the actions of other road users and can spot 

potentially dangerous situations developing, the thinking time will be reduced or eliminated 

completely.  This considerably improves the safety margin.  

 

 

 

 

 

 

 

 

 

Figure 239:  A potential road hazard developing 

In this example situation, an alert driver would anticipate that the cyclist will move out into 

the car lane to avoid parked vehicles ahead.  The cyclist may not be aware of cars following 

him, and may give no signal before turning into the traffic. 

The stopping distances given in figure 237 are a general average under normal driving 

conditions, and can change as a result a variety of factors such as weather conditions, the 

condition of a car's tyres, and the level of concentration of the driver.  We will investigate 

these factors further: 

Figure 240 provides more detailed data on braking distances at different speeds for both dry 

and wet road conditions.  As we might expect, stopping distance will be greater on a wet 

road. 
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Figure 240:  Effect of weather conditions on braking distances 

The figures in figure 240 have been entered into a spreadsheet and plotted as a graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 241:  Braking distances at different speeds for dry and wet road conditions 
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Columns have again been added to the spreadsheet explore the relationships between 

speed and braking distance for both dry and wet road conditions.  Speeds were converted 

from km/hour to miles/hour, to allow a direct comparison with our earlier formulae. It is 

found within reasonable accuracy that two ratios exist: 

𝑑𝑟𝑦 𝑟𝑜𝑎𝑑:                      
𝑏𝑟𝑎𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒: 𝑚

(𝑠𝑝𝑒𝑒𝑑: 𝑚𝑝ℎ)2
= 0.0143 

𝑤𝑒𝑡 𝑟𝑜𝑎𝑑:                      
𝑏𝑟𝑎𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒: 𝑚

(𝑠𝑝𝑒𝑒𝑑: 𝑚𝑝ℎ)2
= 0.0206 

This leads to two alternative equations for total stopping distance: 

Dry conditions: 

𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = (0.3 × 𝑠𝑝𝑒𝑒𝑑) + (0.0143 × 𝑠𝑝𝑒𝑒𝑑2) 

Wet conditions: 

𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = (0.3 × 𝑠𝑝𝑒𝑒𝑑) + (0.0206 × 𝑠𝑝𝑒𝑒𝑑2) 

 

The next factor we might consider is the state of the car's tyres.  We have one set of data 

from tests carried out at 50mph: 
 

 

 

 

 

 

 

 

Figure 242:  Braking distance at 50mph, in relation to tyre tread depth 

Let us assume that many cars have tyres with around the minimum recommended tread 

depth of 3mm.  According to the tests in figure 242, the braking distance would increase 

from 31.7m to 39.5m if the car tyres were worn to the legal limit.  This represents an 

increase in braking distance of: 

(39.5 − 31.7)

31.7
× 100% = 25% 

We might reasonably suppose that this 25% increase in braking distance would also apply at 

other speeds.  We are not told the road conditions for the tests, but supposing that a car 

with heavily worn tyres has to brake on a wet road: 

𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒: 𝑚 = (0.3 × 𝑠𝑝𝑒𝑒𝑑: 𝑚𝑝ℎ) + (0.0206 × 𝑠𝑝𝑒𝑒𝑑: 𝑚𝑝ℎ2 × 1.25) 
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We will now turn our attention to the reaction time of the driver.  A small research project was 

carried out to investigate the relative effects of drinking alcohol up to the legal limit, reading and 

texting while driving.  Figure 243 shows the increases in stopping distances for two different drivers.  

 

 

 

 

 

 

 

 

 

Figure 243:  Increases in stopping distances for two drivers when distracted by reading or texting,  

or when impaired by drinking alcohol up to the legal limit 

It is clear that reading or texting while driving has a much more serious effect on reaction 

time than a moderate amount of alcohol consumption.   The results show large variations 

between the two drivers, perhaps depending on their different abilities to concentrate on 

multiple tasks at the same time.   

To obtain useable data, the thinking distances have been converted from feet to metres, 

then averaged between the two drivers to obtain values for the increase in response to the 

three distracting factors.   

 

 

 

 

 

 

 

 

 

Figure 244:  Estimates of average increase in thinking distance for drivers distracted by reading or texting,  

or influenced by alcohol up to the legal limit 

Whilst these results are very approximate and should be treated with caution, we have 

some indication of the relative effects on drivers. 
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These results provide further formulae for total stopping distance: 

For a driver at the legal alcohol limit: 
𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ((0.3 + 0.065) × 𝑠𝑝𝑒𝑒𝑑) + (0.0143 × 𝑠𝑝𝑒𝑒𝑑2) 

For a driver who is distracted by reading or texting: 
𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ((0.3 + 0.65) × 𝑠𝑝𝑒𝑒𝑑) + (0.0143 × 𝑠𝑝𝑒𝑒𝑑2) 

The results we have collected can now be plotted in a spreadsheet to compare stopping 

distances under different situations which might affect the driver and vehicle: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 245:  Stopping distances under different conditions which might affect a driver and vehicle 

 

Stopping distances clearly increase when the driver is distracted, or when road and tyre 

conditions are poor.  To see how this might matter, we will look at an example: 
 

 

Wet road, worn tyres and driver reading 

or texting 

Wet road, worn tyres and driver at the 

legal alcohol limit 

Wet road with worn tyres  

Wet road  

Normal conditions  

Driver aware of hazard and prepared to 

apply brakes  
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Figure 246 shows a section of road in Bangor, North Wales.  A series of distance 

measurements have been added. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 246:  Ffordd Deiniol, Bangor 

 

If the car ahead brakes very suddenly in an emergency, then about 20 metres of stopping 

distance will be needed to avoid a collision.  Referring to the graph in figure 245: 

A driver would be able to stop safely from a speed of 20 mph, except in a situation 

where they were distracted by reading or texting!  

At 30 mph, the driver could possibly stop in time if the emergency was totally 

unexpected.  However, they would probably stop safely if aware of traffic conditions 

and anticipating a possible hazard ahead. 

At speeds above 30 mph, particularly in wet road conditions or with worn tyres, it is 

unlikely that the driver would avoid a collision. 

Lessons from this work are clear:  Drivers should avoid distractions, and maintain a correct 

speed according to the traffic and weather conditions.  Keep a safe separation distance from 

the vehicle ahead, and try to anticipate road hazards which are developing. 
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River flow 
 

The next example of identifying a pattern in a data set examines river flood levels for the 

town of Dolgellau in North Wales.  Dolgellau has historically experienced flooding from the 

River Wnion, with the most recent serious flood in the centre of the town occurring in the 

1960's (figure 247). 

 

 

 

 

 

 

 

 

 

Students have carried out a project to investigate whether the flood level in the town could 

be predicted by monitoring the water level upstream in the headwaters of the River Wnion. 

A first step was to construct electronic water level monitoring equipment.  Following the 

designs of Keeland, Dowd and Hardegree (1997), barometric water depth recorders were 

assembled.  These make use of pressure transducers which are encased in plastic tubes and 

attached to the river bed.   

 

 

 

 

 

 

 

 

 

 

 

Figure 248:  Pressure transducer assembly for monitoring water depth (Keeland et al., 1997) 

Figure 247:   

Flooding in Bridge 

Street, Dolgellau 
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The pressure transducer consists of a piezo-electric plate which changes its resistance when 

it is flexed.  One side of the plate is exposed to water at the river bed, whilst the other is 

connected to a plastic tube running up to the river bank where it is open to atmospheric air 

pressure.  As the depth of water in the river changes, the differential pressure across the 

plate changes. The piezo-electric resistance is incorporated into an electronic circuit so that 

changes in pressure produce a varying output voltage. 

The electronic circuitry and power supply are housed in a metal container which can be 

secured on the river bank.  An electronic data logger records the output voltage at fixed 

intervals of 5 minutes.  The data could then be downloaded to a laptop computer and 

processed by spreadsheet.  

 

 

 

 

  

 

 

 

 

 

 

Figure 249:  Electronic circuitry, power supply and data logger for the water depth recorder. 

 

After downloading data, the recorded voltages are converted to water depths in metres.  

Voltage is linearly related to water depth, so a simple formula can be used:  

𝑤𝑎𝑡𝑒𝑟 𝑑𝑒𝑝𝑡ℎ: 𝑚 = 𝐴 + (𝐵 × 𝑣𝑜𝑙𝑡𝑎𝑔𝑒) 

where A and B are two constants which are determined experimentally during the 

calibration of the equipment. 

River depth was has been monitored for a number of months in the headwater stream of 

the River Wnion at Pared yr Ychain (figure 250) and below the town of Dolgellau (figure 

251).  Typical results are shown in figure 252, where separate graph lines represent the 

upstream and downstream hydrographs.  Water depths are very much greater in Dolgellau 

than in the headwaters stream, but the graph lines seem to show a similar sequence of 

peaks and troughs.  
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Figure 252:  Hydrographs for the River Wnion at Pared yr Ychain and Dolgellau 

Figure 250:   

Headwater stream at 

Pared yr Ychain 

 

Figure 251:   

River Wnion in 

Dolgellau under flood 

conditions 
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Experiments with the spreadsheet led to a discovery that the upstream hydrograph line 

could be transformed to closely fit the downstream hydrograph using a function: 

𝐷 = 𝐴𝑒𝑑𝐵 + 𝐶 

where D is the downstream depth and d is the river depth monitored in the headwaters.   

 

 

 

 

 

 

 

 

 

 

                             Figure 253:  Upstream hydrograph transformed to fit the downstream hydrograph 

 

The equation parameters were determined empirically as: 

                                                      A = 0.05,  B = 8.2,  C = -0.15   

The significance of this work is that the transformed upstream hydrograph is 3 hours ahead 

of the downstream hydrograph, providing a very accurate prediction of flood levels to be 

expected 3 hours later in the town. 

This flood prediction system could be automated, with upstream river depth values 

transmitted in real time by mobile phone link to a processing computer.   

 

In the next section we will look at another area of study, Health and Social Care, where 

patterns in data are becoming increasingly important for decision making with patients.  We 

will examine calculations of human body parameters: 

 Body mass index, and Body fat percentage.  These values may be used to identify 

obesity and malnutrition  

 Body surface area, and Blood volume.  These values may be used to determine drug 

dosage 
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Human body parameters 
 

Body Mass Index 

Body Mass Index is a measure of body weight relative to height, and indicates whether a 

person is underweight, overweight or in the healthy weight range.   

Body Mass Index is calculated using the formula: 

𝐵𝑀𝐼 =
𝑏𝑜𝑑𝑦𝑤𝑒𝑖𝑔ℎ𝑡: 𝑘𝑔  

(ℎ𝑒𝑖𝑔ℎ𝑡: 𝑚)2
 

Body Mass Index is an estimate of body fat and provides a guide to the risk factor for 

diseases associated with excess body fat.  A higher BMI can indicate a higher risk from heart 

disease, high blood pressure, type 2 diabetes, gallstones, breathing problems, and certain 

cancers. The relative levels of risk have been assessed by calculating average mortality ratios 

for groups of randomly selected individuals within particular ranges of Body Mass Index.  

Mortality ratio represents the ratio of observed deaths in each study group to expected 

deaths in the general population. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 254:  Mortality ratio associated with different ranges of Body Mass Index 

Based on this work, a classification of Body Mass Index values which is commonly accepted 

is: 

Underweight       Below 18.5 

Normal               18.5–24.9 

Overweight                25.0–29.9 

Obesity                30.0 and Above 

           www.biodyncorp.com/product/450/bmi_450.html 

risk risk risk risk 
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Although Body Mass Index measurements can be applied to most men and women, the 
method does have some limitations for determining healthy weights.  The standard BMI 
ranges may be inappropriate in the cases of:   

 Competitive athletes and bodybuilders, because heavier muscle weight may affect 
the results. 

 Pregnant or nursing women, because they need more fat reserves than usual. 

 People over 65, because BMI values as high as 29 may not be unhealthy at this age. 
 

Measurement of waist circumference can help with screening for possible health risks 
associated with excess weight and obesity. If most fat is around the waist rather than at the 
hips, there is a higher risk for heart disease and type 2 diabetes. This risk increases with a 
waist size greater than 35 inches for women or greater than 40 inches for men.  To correctly 
measure the waist, a tape measure should be placed around your middle, just above the 
hipbones.  The measurement is made after breathing out. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 255:  Combining BMI and waist measurements to evaluate risk from obesity 

 
Weight loss would be recommended for people with a BMI greater than or equal to 30, or 
those with a BMI of 25 to 29.9 and an increased risk factor due to fat around the waist. Even 
a small weight loss of between 5 and 10 percent of current weight can help lower the risk of 
developing diseases associated with obesity. People who are overweight but do not have a 
high waist measurement may just need to avoid further weight gain, rather than lose 
weight. 
 
Sometimes it is not possible to make direct measurements of a person's height and weight, 
for example: if a patient is confined to bed and it is undesirable for them to stand upright to 
use a weighing scale.  In these cases, estimates can be made from other body parameters.  

 Tables are available for estimating height from a measurement of the ulna bone in 
the forearm (figure 256). 

 Body Mass Index can be roughly estimated by measuring the upper arm 
circumference, at a point half way between the shoulder and elbow.  The tape 
measure should be snug but not tight. 

o If the mid upper arm circumference is less than 23.5cm, the BMI is likely to be 
less than 20 kg/m2. 

o If the mid upper arm circumference is more than 32.0cm, the BMI is likely to 
be more than 30 kg/m2. 

www.nhlbi.nih.gov/health/educational/lose_wt/BMI/bmi_dis.htm 
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Figure 256:  Estimating height from a measurement of the ulna bone in the arm 

Body Mass Index for children and teenagers is calculated the same way as for adults. 
However, the BMI value and age then need to be located on a specific male or female age 
chart to determine whether the child is within a healthy weight range (figure 257).   
 
 
 
  

www.bapen.org.uk/screening-and-must/must/introducing-must 

Figure 257:  Body Mass Index and age charts for boys and girls  

95th percentile 

85th percentile 

5th percentile 
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Girls and boys develop differently and have different amounts of body fat at different ages, 
so a child's age is taken into account when considering their Body Mass Index.  There is an 
assumption that at any age, children will have a range of BMI values which follow a normal 
distribution.  Most will be close to the mean, with relatively small numbers of children with 
BMI values much smaller or larger than the mean.  The 5% of children with the lowest BMI 
form the left tail of the normal distribution, and the 5% of children with the highest BMI 
form the right tail.  The percentages are proportional to the shaded areas beneath the 
normal distribution histogram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 258:  Normal distribution of BMI values, represented (left) as a histogram and 
(right) as a cumulative curve 

 
It is often convenient to plot the normal distribution as a cumulative curve.  This has a 
characteristic S-shape.  The curve rises only slowly at first, as few children are added with 
low BMI values. The curve then rises steeply for BMI values around the mean as many 
children with these common readings are added, then the curve falls off more gently to add 
the last few children with high BMI values.   

The point on the cumulative curve at which 5% of the children have been added is called the 
5th percentile.  The point, much further on, where 95% of the children have now been 
added is called the 95th percentile. 

The charts shown in figure 257 summarise the percentile values obtained from the BMI data 
of a large number of children, giving an overview of the BMI distributions within the 
populations of boys and girls of different ages.  To use the chart, a point is plotted for the 
child's age and BMI, then interpreted as: 

Underweight   Less than the 5th percentile 

Healthy weight  5th percentile to less than the 85th percentile 

Overweight   85th to less than the 95th percentile 

Obese    Equal to or greater than the 95th percentile 

Maintaining a healthy weight during childhood is especially important for heart health. 

Obese children have a high probability of staying obese throughout their entire lives. 
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In contrast to problems of obesity, malnutrition leading to excessively low body weight is a 
common health problem of particular concern amongst elderly people.  Risk of malnutrition 
should be monitored by staff of care homes.   

Malnutrition is characterised by a combination of low Body Mass Index and weight loss. The 
British Association for Parenteral and Enteral Nutrition (BAPEN) has produced a 
methodology for identifying patients at risk from malnutrition. This involves a series of 
stages: 

Step 1:  Body Mass Index is calculated, then a score is allocated: 
  Greater than 20 kg/m2:          score 0 
  18.5 – 20 kg/m2:                      score 1 
                           Less than 18.5 kg/m2:             score 2 

Step 2:  Weight loss during the past 3-6 months is assessed.  Any planned weight loss on the 
recommendation of medical staff is excluded. 
                          Less than 5% weight loss:       score 0 
                          5% - 10% weight loss:  score 1 
  More than 10% weight loss: score 2  

Step 3:  If the patient is acutely ill and is likely to have had no nutritional intake for more 
than 5 days, then a score of 2 is allocated. 
 
The scores from steps 1 – 3 are then added, to determine the risk of malnutrition: 
                          Score 0:  low risk 
                          Score 1:  medium risk 
                          Score 2 or more: high risk         

The outcome can then be used to plan appropriate patient care: 

For low risk patients, it is simply necessary to continue with malnutrition screening 

at regular intervals.  This might be carried out monthly in a care home. 

For medium risk patients, dietary intake should be monitored for a period of 3 days.  

If this is adequate, then no further action is needed other than regular screening.  If, 

however, the patient's diet is found to be inadequate, then a care plan to improve 

nutrition needs to be put in place. 

For high risk patients, professional help should be sought from a dietician, and a plan 

put in place to improve nutrition as a matter of urgency. 

Although Body Mass Index is used to screen for overweight and obesity, the technique has 

limitations.  The parameter that BMI attempts to estimate is body fat.  However, this 

estimate may not be accurate.  For example, a child may have a high Body Mass Index for 

their age and sex, but to determine if excess fat is really a problem requires an assessment 

of body fat percentage.  A person's total body fat percentage is the weight of the person's 

fat divided by the person's weight.   

Body fat has various functions and includes essential body fat and storage body fat.  
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A certain percentage of body fat is essential to human functions such as: insulating internal 
organs and tissues, regulating body temperature, and for reproductive functions. The 
percentage of essential fat is 3 to 5% in men, and 8 to 12% in women.  

Storage fat consists of fat accumulated in adipose tissue, whose main role is to store energy. 

Typical percentages of body fat are: 
     Females (% fat) Males (% fat) 
  Athletes  14-20%  6-13% 
  Good fitness  21-24%  14-17% 
  Acceptable  25-31%  18-25% 
  Obese   32%+   25%+ 

A simple method of estimating body fat percentage is to use a Body Fat Calliper.  Readings 
are then interpreted according to age and sex, as in the example chart in figure 259.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
www.accumeasurefitness.com/body-fat-measurement-charts-for-men-and-women.html 

Figure 259:  Body fat measurement by calliper 
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Body fat percentage naturally increases with age, so that the healthy range for older people 
is higher than for teenagers. 

Alternative measurement methods are possible to determine body fat percentage.  An 

approximate method for males is to make measurements of total body weight (kg) and 
waist measurement (cm). 

Factor 1 is calculated as:      (Total body weight x 1.082) + 94.42 
Factor 2 is calculated as:      Waist measurement x 4.15 
Lean Body Mass is then equal to Factor 1 - Factor 2 
Body Fat Weight is given by:  Total bodyweight - Lean Body Mass 

We than calculate Body Fat Percentage as: (Body Fat Weight x 100) / total bodyweight 

 

Body surface area 

Body surface area can be an important parameter for calculating drug dosage.  Body surface 

area can be measured directly, but this is understandably a very laborious process.  

Livingston and Lee (2001) have shown that there is a good correlation between body surface 

area and body weight using the formula: 

𝑏𝑜𝑑𝑦 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 = 0.1173 × 𝑤𝑒𝑖𝑔ℎ𝑡: 𝑘𝑔0.6466 

 

 

 

 

 

 

 

 

 

 

 

Figure 260:  Relation between body surface area and weight 

 

It is therefore possible to estimate body surface area directly from body weight, to a 

reasonable degree of accuracy. 
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An equation using the additional parameter of height in the calculation of body surface area 

was developed by Gehan and George (1970): 

𝑏𝑜𝑑𝑦 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎: 𝑚2 = 0.0235 ℎ𝑒𝑖𝑔ℎ𝑡: 𝑐𝑚0.42246 × 𝑤𝑒𝑖𝑔ℎ𝑡: 𝑘𝑔0.51456 

The Gehan-George equation is based on a correlation with direct measurements of over 400 

subjects, including both children and adults.  

 

Blood volume 

Another body parameter which is also of use in calculating drug dosage is blood volume.  
Blood volume can be estimated using Nadler’s equation (Nadler, Hidalgo and Bloch, 1962).  
Two different versions are provided: 

  Males: 

𝑏𝑙𝑜𝑜𝑑 𝑣𝑜𝑙𝑢𝑚𝑒: 𝑚𝑙 =  0.0003668 × (ℎ𝑒𝑖𝑔ℎ𝑡: 𝑐𝑚)3 + 32.2 × 𝑤𝑒𝑖𝑔ℎ𝑡: 𝑘𝑔 + 604 

 Females: 

                  𝑏𝑙𝑜𝑜𝑑 𝑣𝑜𝑙𝑢𝑚𝑒: 𝑚𝑙 =  0.000356 × (ℎ𝑒𝑖𝑔ℎ𝑡: 𝑐𝑚)3 + 33 × 𝑤𝑒𝑖𝑔ℎ𝑡: 𝑘𝑔 + 183 

 

An alternative method simply uses the average number of millilitres of blood per kilogram 

of body weight to calculate total blood volume. For males, this is 75 millilitres of blood per 

kilogram. It may be necessary to make adjustments using Gilcher’s Rule. Not all types of 

tissue contain the same amount of blood. If a person is obese or very thin, this will influence 

the amount of blood per kilogram of body weight.  

Muscular men have 75 ml of blood per kilogram of body weight 

Normal men have 70 ml/kg 

Thin men have 65 ml/kg 

Obese men have 60 ml/kg 

A similar method can be used to calculate blood volume in women. 

 
In this section we have seen that an analysis of body measurements from many individuals 

has allowed health professionals to develop mathematical formulae for a range of body 

parameters which are of value in diagnosis and treatment procedures. 
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Three dimensional landscape modelling 

A very large data set which is useful for many purposes is the Digital Elevation Model for 

Britain.  This data set, produced by the Ordnance Survey and freely available for download 

from the Internet, gives the height of each point on the land surface to an accuracy of 0.1m.  

Points are arranged on a 50 metre grid covering the whole of Britain. 

Data files consist of an array of height values for each 10km grid square.  An extract is 

shown below. 

  

 

 

 

 

 

 

 

Figure 261:  Example of a Digital Elevation Model file 

 

To demonstrate how the content of the file can be used, the row of values highlighted 

above has been plotted as a cross section in figure 262.  This represents a section of cliff 

coastline. 

 

 

Figure 262:  Land surface cross section plotted from Digital Elevation Model data 

 

One of the most useful ways of showing height data on a map is as a series of contour lines 

linking points of equal altitude.  An isolated hill summit would be represented by a series of 

closed contours inside one another. 
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Contour maps can be drawn using the height data in the Digital Elevation Model. We will 

look at a procedure to do this which can be implemented as a computer program. 

The first step is to obtain the four heights for the corners of a 50m grid square. We then 

calculate the height of the middle point of the grid square as an average of the corner 

heights.  The grid square has now been divided into four triangles A - D, and the heights of 

the triangle corners are known. 

 

 

 

 

 

 

 

 

We  can select suitable contour values to be plotted.  Let us suppose that contours are 

required at heights of 250m and 280m.  We will take each contour height in turn, beginning 

with 250m.  

For each of the four triangles of the grid square, we check whether the contour line should 

cut through the triangle.  This will be true if the contour height is between the maximum 

and minimum corner heights of the triangle.  The 250m contour will cross triangles A, B and 

D, but is too low to cross triangle C. 

Figure 263:   

Relation of land surface cross 

section to contour pattern for 

an isolated hill 

 

A 

B C 

D 

Figure 264:   

Example grid cell of the Digital 

Elevation Model  
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If the contour crosses a triangle edge, its cutting position is found on the linear gradient.  

For example, the 250m contour cuts the top edge of the grid square at a point mid-way 

between the corners at heights of 200m and 300m. Once the cutting points for a contour 

have been found, the contour line itself can be drawn. 

 

 

 

 

 

 

 

 

If the procedure is repeated for each grid square of a selected area, a full contour map can 

be created.  It is useful to add a map image below the contours, so that the accuracy of the 

computer program can be checked, and to help with locating points on the map area. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 266:  Contour map created from Digital Elevation Model data 

For many geographical applications, it is useful to produce a three dimensional 

representation of the land surface, rather than a two dimensional map.  The Digital 

Elevation Model again provides the necessary data. 

Figure 265:   

Example of plotting contour 

lines across a grid cell of the 

Digital Elevation Model  
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The simplest three dimensional representation method uses isometric projection, as 

outlined previously in chapter 7.   The basic approach for this technique is illustrated in 

figure 267 below. 

 

 

 

 

 

 

 

 

 

 

The position on the screen of the origin point is chosen.  

Each grid square of the digital elevation model is considered in turn.  The position on 

screen of the grid square base plane is calculated by applying the appropriate offset 

for the numbers of grid rows north and east of the origin. 

Vertical lines are constructed from the corners of the grid square to represent the 

heights of the four corners of the grid square.  An opaque surface patch is then 

plotted to create an element of the ground surface. 

The procedure is repeated for all grid squares of the area to be represented. 

A correct land surface model will be created, but this will appear very plain and featureless.  

A better representation is created if the surface patches can be shaded according to the 

direction of the incident light, as in figure 268. 

 

 

 

 

 

 

 

 

 

Figure 267:   

Construction of a land surface 

model in isometric projection  

grid rows north 

grid rows east 

 
origin 

Figure 268:   

Land surface model with light 

shading  
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To apply light shading, we find the angle Ɵ between the incident light and a surface normal 

perpendicular to the surface patch. Where this angle is small, the light will be shining 

directly onto the surface and the surface patch should be shaded in a lighter colour. 

 

 

 

 

 

 

 

 

We begin by calculating the vector components of the diagonals of the surface patch.  These 

will be the cell dimensions in the x and y horizontal plane, and the height in the z vertical 

direction. 

 

 

 

 

 

 

 

Figure 270:  Vector components of the surface patch diagonals 

The next step is to determine the vector components of the surface normal c, which will 

project from the surface at right angles to both of the diagonals. 

 

 

 

 

 

 

 

The surface normal vector is given by the vector cross product of the two diagonal vectors.  

Figure 269:   

Technique to determine the 

level of light shading for a  

surface patch  

Ɵ 

surface normal 

a 

ax 

ay 

az b 

bx 

by 

bz 

a (ax . ay . az) 

 

b (bx . by . bz) 

 

a x b  =  c (cx . cy . cz) 

 

Figure 271:   

Calculation of the surface 

normal vector  
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Components of the vector cross product are calculated from the components of the 

diagonal vectors by means of the formulae: 
𝑐𝑥 = 𝑎𝑦𝑏𝑧 − 𝑎𝑧𝑏𝑦 

𝑐𝑦 = 𝑎𝑧𝑏𝑥 − 𝑎𝑥𝑏𝑧 

𝑐𝑧 = 𝑎𝑥𝑏𝑦 − 𝑎𝑦𝑏𝑥 

Once we know the direction of the surface normal, we can move on to determine the angle 

which this makes with the incident light.  It is first necessary to decide on the direction of 

the light source.  We will define this as the vector d. 

 

 

 

 

 

 

 

 

 

The angle Ɵ can be found using the vector dot product formula, which gives the cosine of 

the angle between two vectors.  

𝒄 . 𝒅 = |𝒄| |𝒅| cos 𝜃 

We calculate the dot product c.d from the components of the two vectors: 

𝒄 . 𝒅 = 𝑐𝑥𝑑𝑥 + 𝑐𝑦𝑑𝑦 + 𝑐𝑧𝑑𝑧 

Rearranging the dot product formula shows that cos Ɵ can be obtained by dividing this 

quantity by the product of the vector magnitudes. 

cos 𝜃 =
𝑐𝑥𝑑𝑥 + 𝑐𝑦𝑑𝑦 + 𝑐𝑧𝑑𝑧

|𝒄| |𝒅|
 

The magnitude of each vector can be found using an expression of the form: 

|𝒄| = √𝑐𝑥
2 + 𝑐𝑦

2 + 𝑐𝑧
2 

Now that we know the angle between the surface patch and the incident light, this can be 

used to set the light level for the cell.  If the angle is small, the light will be falling directly 

onto the surface and a high light level can be used.  If the incident angle is large, the surface 

patch should be shown in shadow.  

After creating the surface geometry, we can improve the three dimensional model by 

adding either a section of map or air photograph to each surface patch, as shown below. 

Ɵ 

c (cx . cy . cz) 

 
d (dx . dy . dz) 

 Figure 272:   

Angle Ɵ between the surface 

normal vector c and the 

incident light vector d 
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Figure 273:  Isometric landscape models produced by computing students, using (above) map  

and (below) air photograph images 
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Three dimensional landscape models can be made even more realistic by using projective 

geometry to create perspective images.  The principle of this technique is to imagine that 

the solid landscape model is being viewed through a window.  Imaginary lines are 

constructed from points on the model to the viewer.  Where these lines pass through the 

window, the corresponding feature of the image is drawn. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Projective geometry is used in landscape modelling software such as Google Earth, as in the 

example below.  

 

 

 

 

 

 

 

 

 

 

 

Figure 275:  Perspective image of the Mawddach Estuary and Rhinog mountains, created with 

Google Earth landscape modelling software 

Figure 274:  Construction of a perspective image using projective geometry 
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Powers of numbers 

When data sets are collected, it is often important to identify a mathematical function 

which describes the data.  This then allows estimates to be made for additional data points.  

As an example, consider the population data collected in censuses in England and Wales at 

ten year intervals over the period 1801 to 2011.  This data is plotted as a scatter graph in 

figure 276 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 276:  Population of England and Wales 

 

The plotted points appear reasonably close to a straight line, so can be approximated by an 

equation of the form:  

y = ax + b 

where a is gradient of the line, and b is the intercept with the vertical axis when x = 0.  The 

Excel spreadsheet has a function to calculate the equation of the best fit straight line 

through the points.  This is displayed as: 

y = 234,110.024255 x - 413,954,770 

By substituting x =2021 into this equation, we can obtain a prediction for the population of 

England and Wales at the 2021 census as 59,181,590. 

Data can easily be analysed if it has a linear trend, but often the data points follow some 

other pattern.  We will look at examples: 
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In 1619, the astronomer Johannes Kepler published a formula relating the size of the orbit 

of a planet to the time taken to orbit around the sun.  This formula is known as Kepler's 

third law, and we will look at how this can be derived. 

Planetary orbits are generally not circular, but instead have the shape of an ellipse.  The Sun 

is at one of the two foci of the ellipse.  The sum of the distances from the two foci to any 

point on the ellipse is constant, such as the total of the distances a and b in figure 277. 

 

 

 

 

Figure 277:  The elliptical orbit of a planet 

The measurement used by Kepler for the size of the planetary orbits is the length of the 

semi-major axis of the ellipse.   

planet 
 

orbit semi-major axis,  
relative to Earth's orbit 

orbital period, 
Earth years 

  

Mercury 0.39 0.24 
Venus 0.72 0.62 
Earth 1.00 1.00 
Mars 1.52 1.88 
Jupiter 5.20 11.86 
Saturn 9.54 29.46 

 

This data has been plotted in figure 278.  The data points appear to follow a curve, so may 

be related by an equation of the form: 

                                                 period = distancex 

where x is a power that we need to determine. 

 

 

 

 

 

 

 

 

Sun 

planet 

focus 

semi-major axis 

a 
b 

Figure 278:   

Scatter plot of planet orbital 

distances and periods 
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To analyse functions involving powers of numbers, we will need to use logarithms.  

Logarithms are created for particular bases.  The logarithm of a number is the power of the 

base which produces that number.  For example, using base 2: 

                              log2(32) = 5,         because 32 = 25 

We can multiply numbers by adding their logarithms.  Again using base 2: 

                              log2(4) = 2           log2(32) = 5          

                               4*32 = 128          so adding logarithms:  2 + 5 = 7         27 = 128 

In general, if   C  =  A * B,       then     log(C) = log(A) + log(B)   

To raise a number to a power, we multiply the logarithm by the power.  For example: 

                               43= 64                     

                               log2(4) = 2           log2(43) = 3 x 2  = 6                26  =  64 

In general, if   C  = AB,            then      log(C) =  B log(A)   

These relations form the basis for the method to investigate functions involving powers of 

numbers.  We begin by plotting a graph for the logarithms of the two variables distance and 

period.  Logarithms to any base can be used, but it is often convenient to use natural 

logarithms to the base 2.718... (this number, known as e, will be considered in more detail 

when we discuss calculus in chapter 12). If the two variables are related by a power 

function, the points will lie on a straight line.  This does happen, as shown in figure 279. 

 

 

 

 

 

 

 

 

 

 

 

Figure 279:  Logarithmic plot of planet orbital distances and periods 

We find that the equation of the best fitted straight line, within experimental error, is: 

                                                                  y  =  1.5012 x – 0.0001 
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We now need to interpret this result.  If the equation that we are looking for has the form: 

𝑇 =  𝐷𝑛 

where T is the orbital time and D is the orbital distance, then 

ln(𝑇) = 𝑛 ln (𝐷) 

Since our log plot shows ln(D) as the horizontal x coordinate, and ln(T) as the vertical y 

coordinate, then n will be the gradient of the line.  The value for n was found to be 1.5 

within reasonable experimental error.  We can therefore write: 

𝑇 =  𝐷1.5 

This can be expressed more conveniently by squaring both sides 

𝑇2 =  𝐷3 

We have found Kepler's third law:  

'The square of the orbital period for a planet is proportional to the cube of the semi-

major axis of its orbit'. 

As another example of the use of logarithms in analysing a function involving a power, we 

will look at an experiment in physics to determine the value of g, the acceleration due to 

gravity.  This involves measuring the time taken for a metal ball to fall freely under gravity 

through various known distances. 

An accurate measurement of times can be made electronically using apparatus of the type 

shown in figure 280. 

 

 

 

  

electromagnet 

holding a metal 

ball 

electronic 

timer 

activation switch 

distance d 

impact switch, with  a 

hinged plate hit by the 

falling metal ball   

Figure 280:  Experiment to determine acceleration due to gravity 
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An electromagnet holding a metal ball is positioned above a switch plate.  When the system 

is activated, the electromagnet releases the ball and instantly starts an electronic timer.  

After falling a measured distance d, the ball impacts the switch plate and the timer is 

immediately stopped.  The experiment can be repeated a number of times with different 

distances d.  

We begin by plotting a scatter graph of the experimental results.  Typical values are shown 

in figure 281. 

 

Figure 281:  Scatter plot of distances and times for free fall under gravity 

It is known that the equation for free fall under gravity is: 

𝑑 =
1

2
𝑔𝑡2 

where d is distance in metres, t is time in seconds, and g is the acceleration due to gravity in 

ms-2.  Equations of motion will be discussed further in calculus chapter 12.  

Rearranging to make t the subject of the equation: 

𝑡2 =
2𝑑

𝑔
 

𝑡 = √
2𝑑

𝑔
       =         √

2

𝑔
  .  √𝑑 

Taking logarithms of both sides of the equation, remembering that we can multiply numbers 

by adding their logarithms, and that a square root is equivalent to a power of ½ : 

ln(𝑡) =
1

2
𝑙𝑛 (

2

𝑔
) +

1

2
ln (𝑑) 
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We can plot a graph for the logarithms of the two variables distance and time.  The 

experimental points fall close to a straight line. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 282:  Logarithmic plot of distances and times for free fall 

 

Within experimental error, the gradient of the line is 0.5.  This is consistent with the term: 
1

2
ln (𝑑) 

in the equation above.  The intercept of the logarithmic graph represents the added term: 
1

2
𝑙𝑛 (

2

𝑔
) = −0.7947 

                                                        so:    

𝑙𝑛 (
2

𝑔
) = −1.5894 

We can reverse the natural logarithm by applying an exponential function: 

2

𝑔
= exp (−1.5894) 

giving:                                                     𝑔 = 9.80 𝑚𝑠−2 

 

Logarithms provide a useful way of analysing a wide range of data sets where we suspect 

that one property varies as a power of another property.   The first step is to plot a graph of 

natural logarithms of the two variables, to test whether a linear relationship exists.  If so, 

then the techniques demonstrated above can generate a solution to the problem.  
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Kirchhoff's laws 

The current or voltage in a simple Direct Current circuit can be found using Ohm's Law.  For 

example: 

  

 

 

 

 

 

The current flowing in the circuit is given by the formula: 

𝐼 =   
𝑉

𝑅
   =  

9𝑉

100𝛺
 =   0.09 𝐴 

However, more complex circuits with multiple power sources and resistances can be more 

complex to analyse. Here we have two power sources and three resistances arranged in two 

separate loops in the circuit.  The objective is to calculate the currents flowing in each 

branch of the circuit, and the voltages at the points B and E: 

    

 

 

 

 

 

 

Figure 284:  Direct Current circuit with multiple loops 

 

Kirchhoff's Laws provide a means of analysing more complex electrical networks, and are an 

important application of simultaneous equations. 

Kirchhoff's First law: for a given junction or node in a circuit, the sum of the currents 

entering equals the sum of the currents leaving.  

Kirchhoff's Second law:  around any closed loop in a circuit, the sum of the potential 

differences across all elements is zero.  

Both of these laws are common sense conservation principles, which essentially say that 

electrical energy cannot be created from nowhere, and cannot disappear for no reason. 

Figure 283:   

Simple Direct Current 

and resistance circuit 

A B C 

F E D 
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If we take currents flowing into a node as positive, and flowing out of the node as negative, 

the current law requires that the algebraic sum is zero.  For example: 

 

 

 

 

 

 

Figure 285:  Representation of Kirchhoff's current law 

 

The potential difference law requires that the increase in voltage across power sources are 

exactly matched by the voltage drops across the resistances around a circuit.  For example:  

 

 

 

 

 

 

 

 

Figure 286:  Representation of Kirchhoff's potential difference law 

Using these principles, we can now begin an analysis of the multiple loop circuit. A first step 

is to assume the current flow directions in each of the loops.  We will follow the convention 

of showing current flowing from the positive terminals of the power supplies and returning 

to the negative terminals: 

 

 

 

 

 

 

 

0.2 A 

0.3 A 

0.5 A Current law: 

0.2 + 0.3 - 0.5 = 0 

Potential difference law: 

10.0 – 3.0 – 2.0 – 5.0 = 0 

Figure 287:  Assumed current flow directions in the loops of the circuit 

 

A B C 

F E D 

+ + 

I1 I2 

I3 
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It is sometimes the case that a strong power supply drives current in a reverse direction 

through part of the circuit.  We will be able to identify this situation during the calculation, 

as a negative current value will appear in the results. 

We will label the currents flowing in the two loops as I1 and I2 respectively. Our first task is 

to find the values of these currents.  

The voltage drop across a resistance is given by Ohm's law as: 

V = I R 

The voltage drop across the 4 Ω resistance R1 will therefore be: 

I1 x 4 Ω   

 

Both currents flow into node E, so the current leaving the node in the direction of node B 

will be given by the current law as: 

I3 =  I1 + I2 

The voltage drop across the 16 Ω resistance R3 will be: 

(I1 + I2) x 16 Ω   

 

According to the potential difference law, the algebraic total of changes in potential around 

the left hand loop must be zero.  Therefore: 

12 V – (I1 x 4 Ω) – ((I1 + I2) x 16 Ω ) = 0  

or: 

(I1 x (4+16)) + ( I2 x 16) = 12  

 

Similarly, in the right hand loop: 

6 V – (I2 x 4 Ω) – ((I1 + I2) x 16 Ω ) = 0  

so: 

( I1 x 16) + (I2 x (4+16)) = 6  

 

We have now produced a set of simultaneous equations: 

20 I1 + 16 I2  = 12            _______(1) 

16 I1 + 20 I2  =   6            _______(2) 

 

Multiplying equation (1) by 4:            80 I1 +   64 I2  = 48  

Multiplying equation (2) by 5:            80 I1 + 100 I2  = 30  

Subtracting:                                                       - 36 I2  = 18  

                                                                                     I2  = - 0.5 A 

The minus value indicates that the current direction in the right hand loop is actually in the 

opposite direction to our original assumption. 

 

Substituting I2  = - 0.5 in equation (1) gives: 

                                                                        20 I1 - 8  = 12   

                                                                              20 I1  = 20   

                                                                                    I1  = 1.0 A 
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We can now complete the analysis of the circuit by finding the potential difference at the 

node B.  For the power supply E1, we will assume that the potential falls from 12 V at the 

positive terminal to 0 V at the negative terminal.  This is the result of falls in potential across 

the two resistances R3 and R1 in the left hand loop of the circuit: 

 

 

 

 

 

 

 

Considering resistance R1, the potential drop is given by Ohm's law: 

                                          V  =  I R   

so:                                     V =  1.0 A x 4 Ω   =   4 V 

Since node A is at a potential of 0 V, then node B must be at a potential of 4 V. 

 

Calculations using Kirchhoff's laws lead to systems of simultaneous differential equations 

which must be solved to determine the currents flowing through the separate loops of the 

circuit.  Small systems of simultaneous equations can be solved manually, but it can become 

more difficult and time consuming to handle the large equations produced for circuits 

involving many loops.  We may then choose to solve the problem with the aid of a computer 

application, using matrices. This method will be demonstrated with an example: 

 

 

 

 

 

 

 

 

 

Figure 288:  Circuit with assumed current flow directions in the loops 

A B 
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The circuit to be analysed is shown in figure 288.  Our objective is to determine the currents 

I1 – I5 flowing in the different loops of the circuit.  Initial assumptions have been made for 

the current flow directions, but a negative current value will simply appear in the results if 

any of these assumptions is incorrect.  

We begin by setting up the series of equations.  Applying Kirchhoff's current law for the 

nodes F and G:  

I1 – I2 – I3 = 0                 so      I2 =  I1 – I3  

I3 – I4 - I5 = 0                  so      I4 =  I3 – I5  

We can produce an equation for each loop, applying Kirchhoff's potential difference law and 

calculating voltages by means of Ohm's law: 

Left loop 

    from Ohm's law:  15 - 4 I1 – 6 I2 = 0 

substituting for I2 :             15 - 4 I1 – 6 (I1 – I3)= 0 

  so:  10 I1 - 6 I3  = 15 

Middle loop: 

    from Ohm's law:  6 I2 -  I3 – 3 I4 =  0 

substituting for I2 and I4 :  6 (I1 – I3) -  I3 – 3 (I3 – I5) =  0 

  so:  6 I1  - 10 I3 + 3 I5 = 0  

Right loop: 

    from Ohm's law:  10 + 3 I4 – 2 I5 = 0 

substituting for I4 :   10 + 3 (I3 – I5)  – 2 I5 = 0 

  so:  - 3 I3  + 5 I5 = 10 

 

This gives a system of simultaneous equations which can be solved to obtain the current 

values: 

10 I1 - 6 I3  + 0 I5 = 15 

6 I1  - 10 I3 + 3 I5 = 0  

0  I1  - 3 I3  + 5 I5 = 10 

This can be written in an equivalent matrix form as: 

[
10 −6 0
6 −10 3
0 −3 5

] [
𝐼1

𝐼3

𝐼5

] = [
15
0

10
] 

When multiplying matrices, each element of the column matrix is applied in turn to each 

row of the square matrix 

[
10 −6 0
6 −10 3
0 −3 5

]           [
𝐼1

𝐼3

𝐼5

] 
= 10 I1 - 6 I3  + 0 I5 
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[
10 −6 0
6 −10 3
0 −3 5

]           [
𝐼1

𝐼3

𝐼5

] 

If we label the matrices: 

[
10 −6 0
6 −10 3
0 −3 5

] = 𝐴;        [
𝐼1

𝐼3

𝐼5

] = 𝑋;         [
15
0

10
] = B 

then the matrix equation can be written as a multiplication: 

                                                                       A . X = B 

It is known from matrix algebra that: 

          X = A-1. B 

where A-1 is the inverse of matrix A.  When a matrix is multiplied by its inverse, the result is 

the identity matrix. 

A . A-1    =     [
1 0 0
0 1 0
0 0 1

]   

 

The equation  { X = A-1. B }  provides a method for solving the system of simultaneous 

equations and finding the values for the currents I1 ,  I3  and I5 : 

 obtain the inverse matrix A-1 

 multiply this by the column matrix B 

Fortunately there are computer applications readily available for finding the inverses of 

matrices.   

                  

 

 

 

 

 

 

 

 

 

 

Figure 289:  Solution for the inverse matrix using an application available on an Internet page 

 

= 6 I1 - 10 I3  + 3 I5 

  www.mathportal.org/calculators/matrices-calculators/matrix-calculator.php 
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The inverse matrix A-1 can be multiplied by matrix B to obtain the result matrix X: 

1

230
[
41 −30 18
30 −50 30
18 −30 64

] [
15
0

−10
] =

1

230
[

(41 × 15) + (18 × −10)
(30 × 15) + (30 × −10)
(18 × 15) + (64 × −10)

] 

=    
1

230
[

435
150

−370
] = [

1.89
0.65

−1.61
] 

We now have a solution for the currents: 

                                 I1 = 1.89 A        I3  =  0.65 A       I5 = -1.61 A 

Substitution of these values in the original Kirchhoff current equations above gives the two 

remaining values: 

                                 I2 = 1.24 A        I4  =  2.26 A        

The method can be readily extended to handle larger circuits with a greater number of loops 

and power sources. 

 

Boolean algebra 

The data patterns which we have examined so far in this chapter have involved numerical 

values, for example: heights on a land surface, or orbital times for planets.  Another set of 

well-defined patterns relate to the use of logic.   

In 1854, the mathematician George Boole published a system of rules for Boolean algebra.  

This work has important applications in a number of fields where logic expressions are 

analysed, particularly for computing and electronics.    

Boolean algebra is based on defining logic expressions.  For example, we might make two 

statements: 

A:   I want a new car 

B:   I have enough money to buy a new car 

I will only actually buy a new car if both of these expressions are true.  This situation can be 

represented in a Venn diagram.   

 

 

 

 

 

 

I want a 

new car 

I have enough 

money to buy 

a new car 

Figure 290:  Venn diagram illustrating (A AND B)  
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The shaded area in figure 290 belongs to both sets A and B, so the two conditions are both  

met.  In Boolean algebra, this is termed (A and B) and is written with a 'dot' symbol: 

A . B 

Consider now the two statements: 

 A:  My car failed its MOT test and cannot be repaired 

 B:  My car is not big enough to carry the things I need for my job 

Under either of these circumstances, I would need to buy a new car.  The extended shaded 

area of the Venn diagram below now represents purchasing a car: 

 

 

 

 

 

 

Figure 291:  Venn diagram illustrating (A OR B)  

The shaded area represents the total of sets A and B, so either or both of the conditions can 

be met.  In Boolean algebra, this is termed (A or B) and is written with a 'plus' symbol: 

A + B 

An objective of Boolean algebra is to simplify logic expressions where possible.  As an 

example, we might define the statement: 

    A:    Thursday  

This could be represented by a Venn diagram, where Thursday lies within the circle, and all 

other days of the week lie outside the circle.  

 

 

 

 

 

Figure 292:  Venn diagram illustrating (A OR A) , (A AND A) 

Suppose that we write an AND logic expression as: 

A . A 

This would imply that it is BOTH Thursday AND Thursday.  One of the terms is clearly 

redundant, and we could simply say 'It is Thursday'.   

My car 

failed its 

MOT test 

My car is 

not big 

enough 
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The expression can be simplified: 

A . A = A 

Suppose now that we write an OR logic expression: 

A + A 

This would imply that EITHER it is Thursday OR it is Thursday.  One of the terms is again 

redundant and we could simply say 'It is Thursday'.  The expression can again be simplified: 

A + A = A 

Further laws of Boolean algebra can be derived by examining Venn diagrams.  We will define 

three statements: 

 P:  Mountain climbing holidays  

 Q:  Sailing holidays 

 T:   Holidays in Wales 

Suppose that we wish to have a holiday in Wales which involves at least one of the activities 

of sailing or mountain climbing.  This would be represented by the shaded area of the Venn 

diagram, which includes the overlap of Welsh holidays with either of the other circles.   

 

 

 

 

 

 

 

 

Figure 293:  Venn diagram illustrating the Boolean distribution law 

If we were to construct a Boolean algebra expression for the shaded area, this could be 

done in two ways:  

Method 1:  Combine P and Q to represent all mountain climbing and sailing holidays using a 

logical OR operation.  Specify the overlap of this area with the circle T using an 

AND operation.  This will pick out only the activity holidays which are in Wales.  

This sequence can be written: 

(P + Q) . T 

Method 2:  Use a logical AND operation to find the mountain climbing holidays in Wales as 

the overlap of P and T.  Use a similar AND operation to find the sailing holidays 

in Wales as the overlap of Q and T.  Finally, add these two regions using an OR 

operation to give all activity holidays in Wales.   
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 This sequence can be written: 

(P . T) + (Q . T) 

Both methods have led to the same result of the shaded area in the Venn diagram.  The 

logic expressions we deduced are therefore equivalent: 

(P + Q) . T  =   (P . T) + (Q . T) 

This result is known as the distribution law of Boolean algebra. 

Two other useful results in Boolean algebra are de Morgan's laws.  To demonstrate these, 

suppose that an employment agency is recruiting staff.  A vacancy exists for a French 

language tutor.  We can define two statements: 

 P:  the applicant is a qualified teacher 

 Q:  the applicant is a fluent French speaker 

In order to be considered for the post, both of these conditions must be met.  We could 

therefore rule out candidates falling in the shaded area of the Venn diagram. 

 

 

 

 

 

 

 

 

Figure 294:  Venn diagram illustrating de Morgan's conjunction law 

We could again find this shaded area in two different ways: 

Method 1:  Use a logical AND operation to find the overlap of P and Q.  This would represent 

the suitable candidates who are both qualified teachers and speak French.  We 

then take all the remaining area to represent the unsuitable candidates.  This 

could be written as: 

(P . Q) 

                  The line above the expression indicates the logical NOT operation.  In this case, it 

is any part of the Venn diagram which is not in the area (P . Q) 

Method 2: We could use a NOT operation on P to find all candidates who are not qualified 

teachers.  We could similarly use a NOT operation on Q to find all candidates 

who do not speak French.  A candidate in either of these groups would be 

unsuitable.  
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                  This could be written as: 

P + Q 

 which means 'either (not in P) or (not in Q) '.  This will include candidates who are 

not qualified teachers and also do not speak French. 

Both methods have led to the same result of the shaded area in the Venn diagram.  The 

logic expressions are therefore equivalent:  

 (P . Q)  =   P + Q 

This result is known as de Morgan's conjunction law. 

Suppose now that the employment agency has a vacancy for a forestry worker.  We can 

define the statements: 

 P:  the applicant is qualified to drive a tractor 

 Q:  the applicant is qualified to operate a chain saw 

Candidates can be considered for the post if they have one or both of these qualifications.  

We would therefore rule out candidates with neither qualification, who fall in the shaded 

area of the Venn diagram. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 295:  Venn diagram illustrating de Morgan's disjunction law 

As before, we could find this shaded area in two different ways: 

Method 1:  Use a logical OR operation to find the overlap of P and Q.  This would represent 

the suitable candidates who have qualification in at least one of the skills: 

tractor driving and chain saw operation.  We then take all the remaining area to 

represent the unsuitable candidates.  This could be written as: 

(P + Q) 

                  The line above the expression indicates any part of the Venn diagram which is 

not in the area (P + Q) 

Method 2: We could use a NOT operation on P to find all candidates who are not qualified 

tractor drivers.  We could similarly use a NOT operation on Q to find all 
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candidates who are not qualified to use a chain saw.  A candidate would have to 

be in both of these groups to be unsuitable. The unsuitability condition is 

written as: 

P . Q 

The two methods have led to the same result of the shaded area in the Venn diagram.  The 

logic expressions are therefore equivalent:  

 (P + Q)  =   P . Q 

This result is known as de Morgan's disjunction law. 

Boolean algebra is widely used during the design of digital electronic circuits.  Two 

components commonly used in electronic devices are AND gates and OR gates. 

An AND gate, represented by the symbol:   

 

 

takes two input signals which may be at logic state 0 or 1.  The output of the gate is at logic 

state 0, except in the case when both inputs are at logic 1. 

An OR gate, represented by the symbol:   

 

 

takes two input signals which again may be at logic state 0 or 1.  The output of the gate is at 

logic state 1 if either or both of the inputs are at logic 1.  The output is 0 only if both input 

signals are at logic state 0. 

To illustrate how the laws of Boolean algebra can be used to simplify logic expressions, 

consider the electronic circuit represented by the Boolean expression: 

                                                        (A . B) + ((B . C ) . (B + C)) 

A circuit diagram can be constructed using AND and OR logic gates:  

 

 

 

 

 

 

 

 

 

A and B 

B and C 

B or C 

(B and C) and  

(B or C) 

(A and B) or 

[ (B and C) and  (B or C) ] 

Figure 296:  Digital circuit composed of AND and OR logic gates 
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Inputs A, B and C might represent signals from sensors in a machine, and an output of logic 

1 represents an error condition when a warning light or buzzer should operate. 

We can calculate the outputs from the circuit for different combinations of logic states for 

the inputs A, B and C: 

A B C A.B B.C B + C (B . C) . (B + C) (A . B) + ((B . C) . (B + C)) 

0 0 0 0 0 0 0 0 

0 0 1 0 0 1 0 0 

0 1 0 0 0 1 0 0 

0 1 1 0 1 1 1 1 

1 0 0 0 0 0 0 0 

1 0 1 0 0 1 0 0 

1 1 0 1 0 1 0 1 

1 1 1 1 1 1 1 1 
 

If a circuit can be constructed which has fewer logic gates but still produces the same final 

outputs, this has a number of benefits: 

 Manufacturing costs are reduced 

 Less space is required, which might be important in small electronic devices 

 Less power would be needed 

 Less heat would be generated, which reduces problems of heat dissipation 

We will attempt to simplify the logic expression 

                                                        (A . B) + ((B . C ) . (B + C)) 

using Boolean algebra.  We begin by using the distribution law.  We showed earlier that 

(P + Q) . T  =   (P . T) + (Q . T) 

Equating P = B,  Q = C, and T = (B.C) in the logic expression for the circuit gives: 

(A . B) + (B.B.C) + (B.C.C) 

We know that (B . B) can be simplified to just B, and (C . C) can be simplified to C, giving: 

(A . B) + (B . C ) + (B . C) 

One of the (B . C) terms is redundant, so can be omitted: 

(A . B) + (B . C) 

We can finally use the distribution law to produce: 

B . (A + C) 

This simplified expression is used to produce the revised circuit design shown in figure 297.  

The number of logic gates has been reduced from five to two. 
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Figure 297:  Simplified digital circuit  

We can verify that the outputs from the simplified circuit are the same as in the original 

design. The simplified circuit does indeed produce the required pattern of output.  

A B C A + C B . (A + C) 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 0 0 

0 1 1 1 1 

1 0 0 1 0 

1 0 1 1 0 

1 1 0 1 1 

1 1 1 1 1 

Boolean algebra is also important in the design of computer programs, particularly in 

algorithms for expert systems or artificial intelligence applications.  Examples are: 

 Medical diagnosis, combining a range of factors such as diseases which the patient 

has or has not had, and symptoms the patient does or does not exhibit. 

 Careers guidance, based on the subjects which a student did or did not enjoy at 

school, and skills which they do or do not possess.  

 Holiday choice, based on the countries the client does or does not want to visit, and 

the activities they do or do not want to include during their holiday. 

In this chapter we have examined a variety of situations in which algebra can be used to 

identify patterns, simplify or display data.  An important skill in numeracy is to convert raw 

data into information in a format suitable for decision making.  This might, for example, take 

the form of graphs, maps, diagrams or general equations.  Algebra may be essential to the 

production of these materials.   

Algebra can be a difficult subject.  However, algebraic techniques have become so important 

in modern data processing that a study of algebra will be well worth the effort required. 

A or C 

B and   

(A or C) 


